Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Mol Genet Genomic Med ; 12(5): e2431, 2024 May.
Article in English | MEDLINE | ID: mdl-38702946

ABSTRACT

BACKGROUND: Ichthyosis is a common keratotic skin disease with high clinical, etiological and genetic heterogeneity. There are four types of non-syndromic hereditary ichthyoses, among which autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of recessive Mendelian disorders. ARCI present with different phenotypes and ABCA12 pathogenic variants have been shown to cause complex ARCI phenotypes, including harlequin ichthyosis (HI), lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE). METHODS: A sporadic male patient, clinically diagnosed with CIE, was enrolled in this study. Exome sequencing was combined with Sanger sequencing to confirm the diagnosis and identify the pathogenic variants. In silico predictions were made using multiple software programs, and the identified variants were interpreted using the ACMG guidelines. A review of all literature reported ABCA12 variants was performed to explore genotype-phenotype correlations. RESULTS: Compound heterozygous ABCA12 variants [c.5381+1G>A and c.5485G>C (p.Asp1829His)] (NM_173076) were identified. The two variants were not detected in the public database. c.5381+1G>A is predicted to affect ABCA12 mRNA splicing and Asp1829 is highly conserved among various species. In silico analysis suggested that these two variants were responsible for the phenotype of the patient. Genotype-phenotype correlation analysis showed that biallelic truncation variants and/or exon/amino acid deletions in ABCA12 are the most common causes of HI. Biallelic missense variants are most common in LI and CIE. CONCLUSIONS: The compound heterozygous ABCA12 variants caused the CIE phenotype observed in the patient. The spectrum of ABCA12 pathogenic variants were broaden. Genotype-phenotype correlation analysis provided detailed evidence which can be used in future prenatal diagnosis and can inform the need for genetic counselling for patients with ABCA12-related ARCIs.


Subject(s)
ATP-Binding Cassette Transporters , Heterozygote , Ichthyosiform Erythroderma, Congenital , Phenotype , Humans , Male , ATP-Binding Cassette Transporters/genetics , Ichthyosiform Erythroderma, Congenital/genetics , Ichthyosiform Erythroderma, Congenital/pathology , Mutation , Mutation, Missense , Genetic Association Studies , East Asian People
2.
Orthop Surg ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778391

ABSTRACT

OBJECTIVE: Percutaneous repair is an alternative to open surgical repair of the Achilles tendon with comparable, functional results and low re-rupture and infection rates; however, sural nerve injury is a known complication. The purpose of this study is to design a new surgical procedure, the minimally invasive peritendinous submembrane access technique (MIS-PSAT). It offers optimal results, with excellent functional outcomes, and with minimal soft tissue complications and sural nerve injury. METHODS: This retrospective study included 249 patients with acute closed Achilles tendon ruptures treated at our institution between 2009 and 2019. All patients underwent MIS-PSAT at our institution and were followed up for 8-48 months. Functional evaluation was based on the Achilles tendon total rupture score (ATRS) and the American Orthopedic Foot and Ankle Society Ankle-Hindfoot Scale (AOFAS-AHS), associated with local complications and isokinetic tests. RESULTS: None of the patients had infection, necrosis, or sural nerve injury. Re-rupture occurred in two cases. The average times to return to work and sports was 10.4 and 31.6 weeks, respectively. The average ATRS and AOFAS-AHS scores were 90.2 and 95.7, respectively, with an excellent rate of 99.5%. Isokinetic tests showed that ankle function on the affected side was comparable with that on the healthy side (p > 0.05). CONCLUSION: The MIS-PSAT for acute Achilles tendon rupture is easy to perform with few complications. Importantly, the surgical technique reduces the risk of sural nerve injuries. Patients have high postoperative satisfaction, low re-rupture rates, and muscle strength, and endurance can be restored to levels similar to those on the healthy side.

3.
Mol Pharm ; 21(4): 1691-1704, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38430187

ABSTRACT

In the clinical application of freeze-dried highly concentrated omalizumab formulations, extensive visible bubbles (VBs) can be generated and remain for a long period of time in the reconstitution process, which greatly reduces the clinical use efficiency. It is necessary to understand the forming and breaking mechanism of VBs in the reconstitution process, which is a key factor for efficient and safe administration of biopharmaceutical injection. The effects of different thermal treatments on the volume of VBs and stability of omalizumab, mAb-1, and mAb-2 were investigated. The internal microvoids of the cake were characterized by scanning electron microscopy and mercury intrusion porosimetry. Electron paramagnetic resonance was applied to obtain the molecular mobility of the protein during annealing. A large number of VBs were generated in the reconstitution process of unannealed omalizumab and remained for a long period of time. When annealing steps were added, the volume of VBs was dramatically reduced. When annealed at an aggressive temperature (i.e., -6 °C), although the volume of VBs decreased, the aggregation and acidic species increased significantly. Thus, our observations highlight the importance of setting an additional annealing step with a suitable temperature, which contributes to reducing the VBs while maintaining the stability of the high concentration freeze-dried protein formulation.


Subject(s)
Omalizumab , Proteins , Temperature , Freeze Drying , Drug Stability
4.
Pharm Res ; 41(2): 321-334, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38291165

ABSTRACT

PURPOSES: We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation. METHODS: The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet - visible (UV-Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X. RESULTS: Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%). CONCLUSIONS: Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.


Subject(s)
Antibodies, Monoclonal , Chemistry, Pharmaceutical , Antibodies, Monoclonal/chemistry , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Freeze Drying/methods , Mannitol , Water , Drug Stability
6.
J Clin Invest ; 134(5)2024 Dec 21.
Article in English | MEDLINE | ID: mdl-38127458

ABSTRACT

Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.


Subject(s)
Body Fluids , Pulmonary Surfactants , Adult , Animals , Child , Humans , Infant , Mice , Adenosine Triphosphate , Lung , Surface-Active Agents
7.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958530

ABSTRACT

The high prevalence of kidney diseases and the low identification rate of drug nephrotoxicity in preclinical studies reinforce the need for representative yet feasible renal models. Although in vitro cell-based models utilizing renal proximal tubules are widely used for kidney research, many proximal tubule cell (PTC) lines have been indicated to be less sensitive to nephrotoxins, mainly due to altered expression of transporters under a two-dimensional culture (2D) environment. Here, we selected HK-2 cells to establish a simplified three-dimensional (3D) model using gelatin sponges as scaffolds. In addition to cell viability and morphology, we conducted a comprehensive transcriptome comparison and correlation analysis of 2D and 3D cultured HK-2 cells to native human PTCs. Our 3D model displayed stable and long-term growth with a tubule-like morphology and demonstrated a more comparable gene expression profile to native human PTCs compared to the 2D model. Many missing or low expressions of major genes involved in PTC transport and metabolic processes were restored, which is crucial for successful nephrotoxicity prediction. Consequently, we established a cost-effective yet more representative model for in vivo PTC studies and presented a comprehensive transcriptome analysis for the systematic characterization of PTC lines.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Gelatin , Humans , Gelatin/pharmacology , Transcriptome , Kidney Tubules, Proximal/metabolism , Membrane Transport Proteins/metabolism , Cell Line , Drug-Related Side Effects and Adverse Reactions/metabolism , Epithelial Cells/metabolism , Cells, Cultured
8.
Biochem Biophys Res Commun ; 683: 149111, 2023 11 26.
Article in English | MEDLINE | ID: mdl-37857161

ABSTRACT

The transmembrane 63 (TMEM63) family of proteins are originally identified as homologs of the osmosensitive calcium-permeable (OSCA) channels in plants. Mechanosensitivity of OSCA and TMEM63 proteins are recently demonstrated in addition to their proposed activation mechanism by hyper/hypo-osmolarity. TMEM63 proteins exist in all animals, with a single member in Drosophila (TMEM63) and three members in mammals (TMEM63 A/B/C). In humans, monoallelic variants of TMEM63A have been reported to cause transient hypomyelination during infancy, or severe hypomyelination and global developmental delay. Heterozygous variants of TMEM63B are found in patients with intellectual disability and abnormal motor function and brain morphology. Biallelic variants of TMEM63C are associated with hereditary spastic paraplegias accompanied by mild or no intellectual disability. Physiological functions of TMEM63 proteins clearly recognized so far include detecting food grittiness and environmental humidity in Drosophila, and supporting hearing in mice by regulating survival of cochlear hair cells. In this review, we summarize current knowledge about the activation mechanisms and biological functions of TMEM63 channels, and provide a concise reference for researchers interested in investigating more physiological and pathogenic roles of this family of proteins with ubiquitous expression in the body.


Subject(s)
Ion Channels , Membrane Proteins , Humans , Animals , Mice , Ion Channels/genetics , Ion Channels/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Drosophila/metabolism , Mammals/metabolism
9.
Mayo Clin Proc ; 98(9): 1422, 2023 09.
Article in English | MEDLINE | ID: mdl-37661150
10.
J Tissue Eng ; 14: 20417314231196212, 2023.
Article in English | MEDLINE | ID: mdl-37661967

ABSTRACT

Current clinical treatments on lymphedema provide promising results, but also result in donor site morbidities. The establishment of a microenvironment optimized for lymphangiogenesis can be an alternative way to enhance lymphatic tissue formation. Hemodynamic flow stimuli have been confirmed to have an influential effect on angiogenesis in tissue engineering, but not on lymphatic vessel formation. Here, the three in vivo scaffolds generated from different blood stimuli in the subcutaneous layer, in the flow through pedicle, and in an arterio-venous (AV) loop model, were created to investigate potential of lymphangiogenesis of scaffolds containing lymphatic endothelial cells (LECs). Our results indicated that AV loop model displayed better lymphangiogenesis in comparison to the other two models with slower flow or no stimuli. Other than hemodynamic force, the supplement of LECs is required for lymphatic vessel regeneration. The in vivo scaffold generated from AV loop model provides an effective approach for engineering lymphatic tissue in the clinical treatment of lymphedema.

11.
J Mater Chem B ; 11(33): 8007-8019, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37530140

ABSTRACT

Craniofacial/jawbone deformities remain a significant clinical challenge in restoring facial/dental functions and esthetics. Despite the reported therapeutics for clinical bone tissue regeneration, the bioavailability issue of autografts and limited regeneration efficacy of xenografts/synthetic bone substitutes, however, inspire continued efforts towards functional conjugation and improvement of bioactive bone graft materials. Regarding the potential of nitric oxide (NO) in tissue engineering, herein, functional conjugation of NO-delivery dinitrosyl iron complex (DNIC) and osteoconductive bone graft materials was performed to optimize the spatiotemporal control over the delivery of NO and to activate synergistic osteogenesis and angiogenesis in rat calvaria bone defects. Among three types of biomimetic DNICs, [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-COOH) features a steady kinetics for cellular uptake by MC3T3-E1 osteoblast cells followed by intracellular assembly of protein-bound DNICs and release of NO. This steady kinetics for intracellular delivery of NO by DNIC-COOH rationalizes its biocompatibility and wide-spectrum cell proliferation effects on MC3T3-E1 osteoblast cells and human umbilical vein endothelial cells (HUVECs). Moreover, the bridging [SCH2CH2COOH]- thiolate ligands in DNIC-COOH facilitate its chemisorption to deproteinized bovine bone mineral (DBBM) and physisorption onto TCP (ß-tricalcium phosphate), respectively, which provides a mechanism to control the kinetics for the local release of loaded DNIC-COOH. Using rats with calvaria bone defects as an in vivo model, DNIC-DBBM/DNIC-TCP promotes the osteogenic and angiogenic activity ascribed to functional conjugation of osteoconductive bone graft materials and NO-delivery DNIC-COOH. Of importance, the therapeutic efficacy of DNIC-DBBM/DNIC-TCP on enhanced compact bone formation after treatment for 4 and 12 weeks supports the potential for clinical application to regenerative medicine.


Subject(s)
Nitric Oxide , Osteogenesis , Rats , Humans , Animals , Cattle , Iron/pharmacology , Human Umbilical Vein Endothelial Cells , Skull
12.
Dalton Trans ; 52(33): 11691-11697, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37552532

ABSTRACT

The performance of organic light emitting devices (OLEDs) fabricated using Ir(III) complexes bearing 1,3,4-oxadiazole (OXD)-based cyclometallic ligands still needs to be improved. In this work, Ir3+ was coordinated with a 2-(9,9-diethyl-9H-fluoren-2-yl)-1,3,4-oxadiazole (F-OXD) fragment, which was modified with various functionalized substituents, including fluorenyl, OXD and carbazolyl groups. Three complexes, named Ir-Flu, Ir-OXD and Ir-Cz, were synthesized successfully and their photophysical, electrochemical and electroluminescence properties were investigated in detail. All these complexes exhibited yellow-orange emission in solution and a distinct aggregation-induced phosphorescent emission (AIPE) phenomenon was observed. Monochrome OLEDs were fabricated using these phosphorescent dopants, and the turn-on voltage (V), luminance (L) and current efficiency (CE) showed significant improvement compared to analogous OXD-based Ir(III) complexes reported before. In particular, the device with Ir-OXD as the dopant achieved the highest maximum brightness of 25 014 cd m-2 and the lowest efficiency roll-off (42.6%) at the maximum luminance among all the devices. These results provided a proven strategy of functionalized decoration of OXD-based complexes to achieve superior luminous efficiency devices.

13.
Front Med (Lausanne) ; 10: 1158842, 2023.
Article in English | MEDLINE | ID: mdl-37409281

ABSTRACT

Background: Picosecond lasers are widely used in dermatologic and cosmetic practice. In clinical practice, informed consent for laser treatments is critical to ensure patients' understanding of health information. Objectives: To evaluate whether video-based informed consent improves patient comprehension and satisfaction. Methods: The study was performed from August 1 to November 30, 2022. Solar lentigines patients who fulfilled the inclusion criteria were included. Before October 1, 2022, traditional informed consent methods were performed. In the subsequent 2 months, a video-based informed consent was used as an adjunct to traditional consenting methods. Finally, patient comprehension of relevant knowledge about laser treatment and client satisfaction were assessed. Results: A total of 106 patients were included. The mean number of correct answers in the comprehension assessment in the video-based informed consent group was significantly higher than that in the traditional informed consent group (4.4 ± 1.2 vs. 3.4 ± 1.1, p < 0.001). Compared to the traditional informed consent group, more correct answers in the video-based informed consent group were provided by older patients (3.9 ± 1.2 vs. 2.9 ± 1.1, p = 0.004) and patients with lower education levels (4.1 ± 1.1 vs. 3.0 ± 1.2, p < 0.001). The mean satisfaction score in the video-based informed consent group was significantly higher than that in the traditional informed consent (27.8 ± 5.7 vs. 24.3 ± 6.2, p = 0.003). Conclusion: Video-based informed consent helps patients learn clinical literacy more effectively and improves patient satisfaction, especially in those with lower education levels and older ages.

14.
Atten Percept Psychophys ; 85(6): 2083-2099, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37479873

ABSTRACT

Temporal envelope fluctuations of natural sounds convey critical information to speech and music processing. In particular, musical pitch perception is assumed to be primarily underlined by temporal envelope encoding. While increasing evidence demonstrates the importance of carrier fine structure to complex pitch perception, how carrier spectral information affects musical pitch perception is less clear. Here, transposed tones designed to convey identical envelope information across different carriers were used to assess the effects of carrier spectral composition to pitch discrimination and musical-interval and melody identifications. Results showed that pitch discrimination thresholds became lower (better) with increasing carrier frequencies from 1k to 10k Hz, with performance comparable to that of pure sinusoids. Musical interval and melody defined by the periodicity of sine- or harmonic complex envelopes across carriers were identified with greater than 85% accuracy even on a 10k-Hz carrier. Moreover, enhanced interval and melody identification performance was observed with increasing carrier frequency up to 6k Hz. Findings suggest a perceptual enhancement of temporal envelope information with increasing carrier spectral region in musical pitch processing, at least for frequencies up to 6k Hz. For carriers in the extended high-frequency region (8-20k Hz), the use of temporal envelope information to music pitch processing may vary depending on task requirement. Collectively, these results implicate the fidelity of temporal envelope information to musical pitch perception is more pronounced than previously considered, with ecological implications.


Subject(s)
Music , Humans , Acoustic Stimulation/methods , Pitch Perception , Pitch Discrimination
15.
Se Pu ; 41(6): 472-481, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37259871

ABSTRACT

Perfluorinated compounds (PFCs) are widely used in textiles, fire protection, metal electroplating, and semiconductor production owing to their hydrophobic and oil-repellent characteristics. However, they are also persistent organic pollutants. The uncontrolled discharge of PFCs into the environment has led to serious global pollution. PFCs pose severe reproductive, neural, immune, and other threats to human health by accumulating through the food chain. Thus, the development and application of high-performance extraction materials has become a research hotspot in efforts to achieve the accurate detection of trace PFCs in environmental waters. Most traditional PFC adsorbents present a number of disadvantages, such as low adsorption selectivity, slow diffusion, and poor reusability. Covalent organic frameworks (COFs) are crystalline polymers with ordered porous structures, large specific surface areas, and high chemical and thermal stability. These frameworks can easily be functionalized for the desired purpose. In this paper, spherical amino-functionalized COFs (denoted COF-NH2) were fabricated via a two-step method to effectively enrich/remove PFCs from water. First, vinyl covalent organic framework (Vinyl COF) was synthesized at room temperature using 1,4-diradical-2,5-divinylbenzene (Dva) and 1,3,5-tris(4-aminophenyl)benzene (Tab) as building blocks. Then, thioether-bridged aromatic amine-functionalized spherical COF-NH2 was synthesized through a thiol-alkenyl click reaction using 4-aminothiophenol as the functional monomer. COF-NH2 showed good dispersion in water owing to its abundant amino groups, forming multiple hydrogen bonds with the F atoms of PFCs. The synergistic hydrophobic interactions between the organic skeleton of the COF and alkyl carbon chains of the PFCs led to enhanced adsorption efficiency. The produced Vinyl COF and COF-NH2 were characterized by Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and Brunner-Emmet-Teller (BET) measurements. The results confirmed that spherical COF-NH2 materials with a homogeneous size distribution were successfully fabricated. The obtained COF-NH2 microspheres had a diameter of approximately 500 nm and exhibited high thermal stability as well as a large specific surface area and pore volume. The adsorption kinetics, isotherm adsorption models, pH effects, and regeneration properties of COF-NH2 were also investigated, and the results indicated that the adsorption of PFCs by COF-NH2 conformed to the pseudo-second-order kinetic and Langmuir isotherm adsorption models. The obtained COF-NH2 microspheres can be applied over a wide pH range, and the best adsorption effect was achieved in neutral and alkaline environments. After five cycles of regeneration and reuse, the COF-NH2 microspheres retained their good adsorption efficiency for PFCs. The adsorption mechanism was mainly attributed to the synergistic effect of hydrogen bonding and hydrophobic interactions between COF-NH2 and the PFCs. The extraction efficiencies of the microspheres toward five PFCs (perfluorobutyric acid, perfluorovaleric acid, perfluorohexanoic acid, perfluorooctanoic acid, and perfluorononanoic acid) in tap and Pearl River water samples were between 91.76% and 98.59%, with relative standard deviations (RSDs) (n=3) varying from 0.82% to 3.8%; these findings indicate that the obtained COF-NH2 is promising for the extraction of PFCs from complex water samples. Given their uniform size distribution, high thermal stability, good adsorption performance, and reusability, the novel spherical COF-NH2 materials developed in this study may be used as solid-phase extraction materials or filled into liquid chromatographic columns for the enrichment, separation, and detection of PFCs in complex samples.

16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(3): 830-836, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37356947

ABSTRACT

OBJECTIVE: To investigate the possible causes of abnormal hemoglobin electrophoresis results. METHODS: The hemoglobin electrophoresis results of 5 696 patients in the First Affiliated Hospital of Chengdu Medical College from September 2018 to July 2021 were collected, and the abnormal results and clinical significance were analyzed. RESULTS: The results of 486 patients (accounting for 8.53%) were abnormal, of which 300 cases had increased HbA2, 135 cases had decreased HbA2, 44 cases had increased F alone, and 7 cases had abnormal hemoglobin bands. Among the 486 patients, 246 patients were thalassemia gene positive (the positive rate was 50.62%), including 29 cases of α thalassemia, 208 cases of ß thalassemia and 9 cases of αß thalassemia. Among the patients with elevated HbA2, 68.67% were detected ß thalassemia, 3.00% αß thalassemia, 9.33% were suspected to be caused by macrocytosis, 6.33% by thyroid dysfunction, and 12.67% by uncertainty of the method. Among the patients with reduced HbA2, 21.48% were detected α thalassemia, 60.00% iron deficiency anemia, 8.15% were suspected to be caused by thyroid dysfunction, and 10.37% by uncertainty of the method. Among the patients with elevated F alone, the results of thalassemia gene detection were negative, 40.91% of them were suspected to be caused by macrocytosis, 27.27% by hereditary persistence of fetal hemoglobin, 29.55% by special physiological condition of pregnant women, and 2.27% by hyperthyroidism. Abnormal hemoglobin bands were detected in 7 patients, including 4 cases of hemoglobin D, 2 cases of hemoglobin E, and 1 case of hemoglobin J. CONCLUSION: Thalassemia, iron deficiency anemia, macrocytosis such as megaloblastic anemia and non-severe aplastic anemia, thyroid dysfunction, hereditary persistence of fetal hemoglobin, abnormal hemoglobin diseases, the uncertainty of the method are all important causes of abnormal hemoglobin electrophoresis results. In clinical work, the patient's indicators should be comprehensively analyzed to determine the possible cause.


Subject(s)
Anemia, Iron-Deficiency , Hemoglobins, Abnormal , alpha-Thalassemia , beta-Thalassemia , Humans , Female , Pregnancy , beta-Thalassemia/genetics , Fetal Hemoglobin/analysis , Blood Protein Electrophoresis , Hemoglobin A2/analysis , Hemoglobins, Abnormal/analysis
17.
MycoKeys ; 95: 163-188, 2023.
Article in English | MEDLINE | ID: mdl-37251991

ABSTRACT

Colletotrichum species are well-known plant pathogens, saprobes, endophytes, human pathogens and entomopathogens. However, little is known about Colletotrichum as endophytes of plants and cultivars including Citrusgrandis cv. "Tomentosa". In the present study, 12 endophytic Colletotrichum isolates were obtained from this host in Huazhou, Guangdong Province (China) in 2019. Based on morphology and combined multigene phylogeny [nuclear ribosomal internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (gapdh), chitin synthase 1 (chs-1), histone H3 (his3) actin (act), beta-tubulin (ß-tubulin) and glutamine synthetase (gs)], six Colletotrichum species were identified, including two new species, namely Colletotrichumguangdongense and C.tomentosae. Colletotrichumasianum, C.plurivorum, C.siamense and C.tainanense are identified as being the first reports on C.grandis cv. "Tomentosa" worldwide. This study is the first comprehensive study on endophytic Colletotrichum species on C.grandis cv. "Tomentosa" in China.

18.
Pigment Cell Melanoma Res ; 36(3-4): 288-298, 2023.
Article in English | MEDLINE | ID: mdl-37056170

ABSTRACT

Lentigines are well-defined, small, brown macules resulting from the accumulation of melanin content in the basement membrane zone with an increase in the number of melanocytes. Hereditary multiple lentigines (ML) can be associated with multiple genes and are not commonly encountered in clinical practice. Patients can solely have skin involvement or present with multisystemic deformative phenotypes. This study aimed to describe four unrelated Chinese families presenting with ML as their first visit symptom. We performed whole-exome sequencing (WES) and Sanger sequencing on all patients and immediate family members for precise molecular diagnosis. Two novel variants c.1548 T > A (p.Ser516Arg) and c.1811C > A (p.Thr604Lys) in SASH1, and two recurrent variants c.1403C > T (p.Thr468Met) and c.1493G > T (p.Arg498Leu) in PTPN11, were identified in these four families. We also summarized the genes associated with ML and differential diagnosis of pigment abnormality. We suggested that the molecular diagnosis of ML should be emphasized because it can help in the clinical differential diagnosis and further genetic counseling and prognosis.


Subject(s)
East Asian People , Lentigo , Humans , Lentigo/diagnosis , Lentigo/genetics , Melanocytes , Mutation , Phenotype , Syndrome
19.
Exp Cell Res ; 426(1): 113552, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36914061

ABSTRACT

It is recognized that the cerebral ischemia/reperfusion (I/R) injury triggers inflammatory activation of microglia and supports microglia-driven neuronal damage. Our previous studies have shown that ginsenoside Rg1 had a significant protective effect on focal cerebral I/R injury in middle cerebral artery occlusion (MCAO) rats. However, the mechanism still needs further clarification. Here, we firstly reported that ginsenoside Rg1 effectively suppressed the inflammatory activation of brain microglia cells under I/R conditions depending on the inhibition of Toll-likereceptor4 (TLR4) proteins. In vivo experiments showed that the ginsenoside Rg1 administration could significantly improve the cognitive function of MCAO rats, and in vitro experimental data showed that ginsenoside Rg1 significantly alleviated neuronal damage via inhibiting the inflammatory response in microglia cells co-cultured under oxygen and glucose deprivation/reoxygenation (OGD/R) condition in gradient dependent. The mechanism study showed that the effect of ginsenoside Rg1 depends on the suppression of TLR4/MyD88/NF-κB and TLR4/TRIF/IRF-3 pathways in microglia cells. In a word, our research shows that ginsenoside Rg1 has great application potential in attenuating the cerebral I/R injury by targeting TLR4 protein in the microglia cells.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Rats , Animals , Microglia/metabolism , Toll-Like Receptor 4/metabolism , Neuroprotective Agents/pharmacology , Brain Ischemia/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
20.
Huan Jing Ke Xue ; 44(2): 1104-1119, 2023 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-36775633

ABSTRACT

Saline water irrigation has become an important means to alleviate the shortage of freshwater in arid areas. However, long-term saline water irrigation can cause soil salinity accumulation, affect soil microbial community structure, and then affect soil nutrient transformation. In this study, we used metagenomics to investigate the effects of long-term saline water drip irrigation on soil microbial community structure in a cotton field. In the experiment, the salinity of irrigation water (ECw) was set to two treatments:0.35 dS·m-1 and 8.04 dS·m-1 (denoted as FW and SW, respectively), and the nitrogen application rates were 0 kg·hm-2and 360 kg·hm-2 (denoted as N0 and N360, respectively). The results showed that saline water irrigation increased soil water content, salinity, organic carbon, and total nitrogen content and decreased soil pH and available potassium content. Nitrogen fertilizer application increased soil organic carbon, salinity, and total nitrogen content and decreased soil water content, pH, and available potassium content. The dominant bacterial phyla in each treatment were:Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Gemmatimonadetes. Saline water irrigation significantly increased the relative abundances of Actinobacteria, Chloroflexi, Gemmatimonadetes, and Firmicutes but significantly decreased the relative abundances of Proteobacteria, Acidobacteria, Cyanobacteria, and Nitrospira. Nitrogen fertilizer application significantly increased the relative abundances of Chloroflexi and Nitrospira but significantly decreased the relative abundances of Acidobacteria, Gemmatimonadetes, Planctomycetes, Cyanobacteria, and Verrucomicrobia. LEfSe analysis showed that saline water irrigation had no significant effect on the number of potential biomarkers, and nitrogen fertilizer application decreased the number of potential biomarkers in soil microbial communities. The correlation network diagram showed that the 20 genera had different degrees of correlation, including 44 positive correlations and 48 negative correlations. The core species in the network diagram were Nocardioides, Streptomyces, Pyrinomonas, Candidatus_Solibacter, and Bradyrhizobium spp. Saline water irrigation increased the relative abundances of the denitrification genes nirK, nirS, nasB, and norC and decreased the relative abundances of the nitrification genes amoB, amoC, and nxrA, whereas nitrogen fertilizer application increased the relative abundances of the nitrification genes amoA, amoB, amoC, hao, and nxrA and decreased the relative abundances of the denitrifying genes narB, napA, nasA, and nosZ. Saline water irrigation could adversely affect soil physicochemical properties; SWC, EC1:5, and BD were the main driving factors affecting soil microbial community structure and function genes; and soil microorganisms adapted to soil salt stress by regulating species composition.


Subject(s)
Carbon , Soil , Soil/chemistry , Fertilizers , Bacteria/genetics , Proteobacteria , Gossypium , Acidobacteria , Saline Waters , Nitrogen , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...